Homogeneous factorisations of complete graphs with edge-transitive factors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous factorisations of complete graphs with edge-transitive factors

A factorisation of a complete graph Kn is a partition of its edges with each part corresponding to a spanning subgraph (not necessarily connected), called a factor. A factorisation is called homogeneous if there are subgroups M <G ≤ Sn such that M is vertex-transitive and fixes each factor setwise, and G permutes the factors transitively. We classify the homogeneous factorisations of Kn for whi...

متن کامل

Homogeneous factorisations of complete multipartite graphs

A homogeneous factorisation of a graph is a partition of its arc set such that there exist vertex transitive subgroups M < G 6 Aut(Γ) with M fixing each part of the partition setwise and G preserving the partition and transitively permuting the parts. In this paper we study homogeneous factorisations of complete multipartite graphs such that M acts regularly on vertices. We provide a necessary ...

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

Homogeneous factorisations of Johnson graphs

For a graph Γ, subgroups M < G 6 Aut(Γ), and an edge partition E of Γ, the pair (Γ, E) is a (G, M)-homogeneous factorisation if M is vertex-transitive on Γ and fixes setwise each part of E , while G permutes the parts of E transitively. A classification is given of all homogeneous factorisations of finite Johnson graphs. There are three infinite families and nine sporadic examples.

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2008

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-008-0127-2